Pharma	Protocol Number	Preparation Date	
Hub.com	Version Number	Revision Date	
Product / Material			
Active Ingredient			
Types of Analytical Pro	ocedures		\frown

Approvals

Batch No.

Responsibility	Designation	Name	Signature	Date
Prepared by			N.	

Responsibility	Designation	Name	Signature	Date
Reviewed by				

Responsibility	Designation	Name	Signature	D
Approved by		N.		
	an			
NN	9			
NNN				
hond				

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

Protocol Number	Preparation Date	
Version Number	Revision Date	

TABLE OF CONTENTS

Sr. #	Content	Page No.
1.	Objective	03
2.	Scope	03
3.	Material Used (General):1.1Glassware Used:1.2Traceable Material Used:	03
	Procedure: 4.1 Specificity	03
	4.2 Accuracy	05
	4.2.1 Accuracy-Spiked Placebo	05
	4.2.2 Accuracy-Standard Addition Method	06
	4.3 Linearity	07
Д	4.4 Precision	08
	4.4.1 Repeatability	08
	4.4.2 Intermediate Precision	08
	4.5 Detection Limit	13
	4.6 Quantitation Limit	14
	4.7 Range	14
	4.8 Robustness	15
	4.9 System Suitability	16
5	Conclusion	16
6	Signature Verification Sheet	17
7	List of Appendices	17
8	Equipment used in Validation activity	17
9	Post Approval	17

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

1.0 PRE-VALIDATION/ VERIFICATION REQUIREMENTS.

Chemicals, such as reagents and standards, should be available in sufficient quantities, accurately identified, sufficiently stable and checked for purity. Other materials and consumables, for example, chromatographic columns, should be qualified to meet the column's performance criteria. Validation on the analytical procedure should be performed with homogeneous samples, and validation data should be obtained by repeatedly analyzing aliquots of a homogeneous sample, each of which has been independently prepared according to the analytical method procedure.

1.1 ANALYTICAL EQUIPMENT QUALIFICATION.

Before undertaking the validation study, it is necessary to verify that the analytical system is adequately designed, maintained, qualified.

1.1.1 INSTALLATION QUALIFICATION (IQ).

Documented Validation that all key aspects of an installed High performance Liquid chromatography system (Shimadzu) adhere to the approved design specification and that the recommendations of the Shimadzu have been suitably considered.

Protocol Number; ____

1.1.2 OPERATIONAL QUALIFICATION (OQ).

Operational Validation carried out after installation that shows High Performance Liquid chromatography system (Shimadzu performs in accordance with (Shimadzu) specifications and process requirements and that the appropriate GMP systems (e.g. training, calibration, and maintenance, etc.) are in place. Protocol Number; _____

1.1.3 PERFORMANCE QUALIFICATION (PQ).

Performance Qualification carried out after Operational (vendor) that shows the tests carried out for the Performance Qualification of the HPLC are in complete agreement with the required limits and criteria. Method being used for the determination of test Methods produces consistent, reproducible and reliable results therefore it is suitable for its intended purpose. I-e (Quantification and Qualification). Protocol Number:

1.1.4 CALIBRATION STATUS OF EQUIPMENT.

Equipment was calibrated and bears calibration sticker of the external calibrator. Calibration Date: ______

Next Calibration Date

Calibration Certificate No.

Calibrated by:

1.2 STABILITY OF THE ANALYTE(S) IN THE SOLUTIONS.

Method development process shows that it generates reproducible, consistent, the stability of the analyte(s) in the solutions, and that of mobile phase give reliable results.

1.3 FACILITIES:

The validation of the method of Determination will be carried out in the Chemistry Lab "Name of organization"

1.4 IDENTIFICATION OF MACHINE/ EQUIPMENT USED:

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

Protocol Number	Preparation Date	
Version Number	Revision Date	

High Performance Liquid Chromatography / Analytical Balance.

Sr. #	Instrument Name	Make & Model	Serial No.	Lab Identification No.
01	PUMP			
02	Auto Sampler			
03	Column Oven			
04	CBM			
05	PDA Detector			
06	Analytical balance			
07	HPLC Column			

1.5 TRACEABILITY OF MATERIAL OR PRODUCT USED FOR STUDY:

Sr. #	Type of material	Name	Manufacturer of material / Product	Lot No. / Batch No.	Expiry
01	Reference Standard.				
02	Raw Material				
03	Raw Material				
04	Tablets				
05	Tablets				
06	Tablets				
07	Tablets				

1.6 CHEMICALS / GLASSWARE / APPARATUS USED:

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

	Pharma Hub.com	Protocol Num Version Num	nber ber			Prep: D Revisi	aration ate on Date		
Sr.	Nam			Type /	Manufa	acturer	Lot No.	/ Batch No.	Expiry
#			ur	ncertainty	marran	aotaroi	/ Se	erial No.	у
01	Methanol								
02	Water								
03	Nylon Filters (M.F	>)							-
04	Syringe Filters								
05	50ml volumetric fla	asks.							
06	1.0 ml Graduated	l pipet.							
07	3.0 ml Gradated	pipet.							-
08	5.0 ml Gradated	pipet.							
09	Glass Beakers 50	0,100,500ml							-
10	Magnetic Stirrer								-
11	Spatula(s)							(-) ·	-
12	Weighing Boats / papers	Butter							
12	Motor & pastel							-	-
13	Sonicate bath								
14	Filtration Syringe								
15	Auto sampler HP	LC Vials							

2.0 **SCOPE**

OBJECTIVE 3.0

4.0 <u>METHOD TO BE VARIFIED/ VALIDATE.</u> Use HPLC Work instruction for HPLC Operations. Work Instruction #_____ Use Analytical Balance Work instruction for weighing. Work Instruction # _____

Test	Specification / Method	Reference
	CHROMATOGRAPHIC CONDITIONS	
	Column	
	Mode	
	flow rate	
	Column temperature.	
Quantification /	Wavelength	
Identification	Injection Volume	
	Run Time	
	Injection Procedure	
	System Suitability	
	Mobile Phase	
	Diluent	

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

Phar	ma	Protocol Number		Preparation Date		
	com	Version Number		Revision Date		
	STANI	DARD SOLUTION PR	EPRATION:			
	SAMP	LE SOLUTION PREF	PRATION:		C	or (
	INJEC	TION PROCEDURE:			0 .	
	CALC	ULATIONS:		Ser		
	Where	;	305			
	90%-1 Precau	10% of the labelled a utions:	amount of			
NN	1. 2. 3. 4. 5. 6. 7. 8.	Use Pyrex type glas During analysis tem Use dried glassware Use HPLC grade so All samples must be Always degas the n solvent mixing or dur cause pump malfund Never run the colu- reservoir. Use a 0.2µ sized syn injection.	sware and broken glas perature should be in b and rinse with solvent lvents only. filtered with 0.45µ Filte nobile phase, as air bu ring temperature or pres ctions and detector sign mn dry. Make sure th ringe filter for sample. A	sware should not be etween 20-25°c. to be used before to er. bbles may tend to ssure changes. Air to hal noise. here is enough so Always filter your sa	e used. use. form during bubbles may lvent in the mple before	
	Metho	od Reference: In-	House			

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

Protocol Number	Preparation Date	
Version Number	Revision Date	

5.0 <u>SPECIFICITY:</u>

Specificity is the ability to assess unequivocally the analyte in the presence of components which may be expected to be present. Typically these might include impurities, degradants, matrix, etc.

5.1 Identification Tests.

Specificity ensure the identity of an analyte.

Methodology: specificity is demonstrated by the ability to discriminate between compounds of closely related structures, or by comparison to known reference materials.

5.2 Purity Test

Specificity ensure that all the analytical procedures (Method) performed allow an accurate statement of the content of impurities of an analyte, i.e. related substances test, heavy metals, residual solvents content, etc.

Methodology: Impurities available: specificity is demonstrated by using spiking the drug substance or product with appropriate levels of impurities.

5.3 Assay (content or potency):

To provide an exact result which allows an accurate statement on the content or potency of the analyte in a sample.

Methodology: specificity is demonstrated by using spiked samples to show that method results are unaffected by the presence of impurities or excipients etc.

Pla	acebo Interference

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

LOGO		Protocol Number		Pre	paration Date	
		Version Number		Revi	sion Date	
Analytical Test Method Validation / Verification Prot			n Protocol	Pa	age No.	Page 8 of 17
Sr. #	Exci	pients Name	Peak Time			Peak Area

	The inactive material did not show significant absorbance / peak at λ max 228 nm.	
Acceptance Criteria	Known degradation products, synthetic impurities and sample matrix present in the commercial product do not interfere with the determination of the active constituent.	

6.0 LINEARITY & RANGE.

Prepare a range of standards containing at least five different concentrations of analyte in expected working range. Verify that the method provides acceptable precision, accuracy, and linearity when applied to samples at the extreme as well as within range. For assay 80-120%, determination of impurity 50-120%, content uniformity 70-130%, Dissolution $\pm 20\%$ of over specified range of the test concentration.

Concentration %	Concentration mg/ml	Sample 1	Sample 2	Sample 3	Avg. Peak area

LOGO	Protocol Number	Preparation Date		
	Version Number		Revision Date	
Analytical Test Method Validation / Verification Protocol		Page No.	Page 9 of 17	

Slope = 9400.39

Parameters	Criteria	Result	Conclusion Qualified√ - Disqualified×
Correlation coefficient	NLT 0.9990		Qualified Not Qualified
y-intercept Criteria	NMT 2.0%		Qualified Not Qualified

7.0 ACCURACY AND PRECISION

7.1 ACCURACY AND RECOVERY

In the study of accuracy / recovery, Known amount of sample corresponding to three concentration levels i.e. 50%, 100 % and 150 % were taken. Results were obtained using nine determinations over three concentration levels (50%, 100%, and 150 %) and three replicate of each concentration. 50 percent is (lowest concentration) and 150 percent (highest concentration) of the expected working range.

The average of individual recovery was found with in ± 2 % of the theoretical amount. Acceptance criteria: (theoretical amount ± 4 %)

Level %	Peak Area of Replicate (Samples)	Peak Area of Replicate (Standard)	%age Recovery	Average Recovery
50 %				
100%				
150%				

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

1000	Protocol Number		Preparation Date	
LOGO Version Nun		Revision Date		
Analytical Test Method Validation / Verification Protocol		Page No.	Page 10 of 17	

	Criteria		Results	Conclusion Qualified√ - Disqualified×
Limits	For 50 % Level	48 – 52 %	49.64%	Qualified Not Qualified
	For 100 % Level	96 – 104 %	100.12 %	Qualified Not Qualified
	For 150 % Level	144 – 156 %	153.82 %	Qualified Not Qualified

7.2 REPEATABILITY PRECISION (System Precision).

Six replicates of a 100% test solution and measure the responses peak of each sample. The relative standard deviation of the six readings should not be greater than 1%.

	Observations					
S. No.	Retention Time (min)	Peak Area				
1	2.847	9188940				
2	2.841	9149437				
3	2.834	9140982				
4	2.837	9121143				
5	2.840	9104771				
6	2.836	9045541				
Mean	2.8392	9125135.66667				
Standard Dev.	0.004622409	48329.34105				
Relative Standard dev (%RSD)	0.162808659	0.52963				

Acceptance Criteria			Conclusion	
	Criteria	Result	Qualified√	- Disqualified×

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

1000	Protocol Number			Prepa Da	ration ate	
LOGO	Version Number	Number		Revision Date		
Analytical Test Method Validation / Verification Protocol		ol	Page	e No.	Page 11 of 17	
RSD < 1.0 %			Quali	fied Not Qualified		

7.3 INTERMEDIATE PRECISION (Method Precision).

The Precision of a method is determined by assaying aliquots of a homogeneous sample to be able to calculate statistically significant estimates of standard deviation or relative standard deviation. Assay should be of samples that have all gone through the entire analytical procedure from sample preparation through final analysis.

Typical variations to be studied include days, analysts, equipment, etc.

7.3.1 WITHIN DAYS AND BETWEEN DAYS VARIATION (Reproducibility)

Day(s)	Peak Area of Sample	Peak Area of Standard	Assay%	Average Assay %	STDV	%RSD
01				201		
02						
03			3			

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

LOGO	Protocol Number		Preparation Date	
	Version Number		Revision Date	
Analytical Test Method Validation / Verification Protocol		Page No.	Page 12 of 17	

7.3.2 ANALYST TO ANALYST VARIATION (RUGGEDNESS).

Analyst(s)	Peak Area of Sample	Peak Area of Standard	Assay%	Average Assay %	STDV	%RSD
JB					U)
AJ					Ŷ.	

7.3.3 EQUIPMENT TO EQUIPMENT VARIATION (RUGGEDNESS).

Analyst(s)	Peak Area of Sample	Peak Area of Standard	Assay%	Average Assay %	STDV	%RSD
			3			
JB			0			
AJ		\mathbf{A}				
<u> </u>		V				

				Conclusion
	Criteria	Analyst(s)	Result	Qualified√ - Disqualified×
	X			Qualified Not Qualified
Acceptance	RSD < %			Qualified Not Qualified
Criteria				Conclusion
	Criteria	Equipment	Result	Qualified $$ - Disqualified×
				Qualified Not Qualified
				Qualified Not Qualified

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

LOGO	Protocol Number		Preparation Date	
	Version Number		Revision Date	
Analytical Test Method Validation / Verification Protocol		Page No.	Page 13 of 17	

8.0 <u>ROBUSTNESS:</u>

The robustness of an analytical method is a measure of its capacity to remain unaffected by small but deliberate variations in method parameters to ensure reliability during normal usage (e.g., a small change in the composition of an HPLC mobile phase \pm 2 %, column temperature \pm 5 °C, reagents, pH of buffer of an HPLC mobile phase 0.1 pH units and Injection volume by + 2 µL.

Flow rate	Peak area	Avg. Peak Area	SD	%RSD
1.1				CO.
1.3				\circ
1.5				
Mobile Phase composition	Peak area	Avg. Peak Area	SD	%RSD
			No.	
			J	
		29		
Column Oven	Peak area	Avg. Peak Area	SD	%RSD
pH Buffer	Peak area	Avg. Peak Area	SD	%RSD
		-		
<i>N</i>				

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

1000	Protocol Number		Preparation Date	
LOGO	Version Number		Revision Date	
Analytical Test Method Validation / Verification Protocol			Page No.	Page 14 of 17

Injection volume	Peak area	Avg. Peak Area	SD	%RSD
		-		
		-		CO.

				Conclusion Qualified√ -
	Criteria	Parameters	Result	Disqualified×
Acceptance		Flow Rate		Qualified Not Qualified
Criteria for		MP Composition	XO	Qualified Not Qualified
Robustness		Column Oven		
	RSD < %	pH buffer		Qualified Not Qualified
		Injection Volume		Qualified Not Qualified

9.0 LIMIT OF DETECTION (LOD). The detection limit of an analytical procedure is the lowest analytical concentration at which an analyte(s) could be detected qualitatively. LOD can be calculated at levels approximating the LOD according to the formula LOD =3.3(SD/S). Where SD: Standard deviation and S: Slope

Sample	Conc. %	Conc. (mg/ml)	Avg. Peak Area	Standard Deviation	Slope	Conc. (ug/ml) at LOD 3.3 x std.dev /slop	Area at LOD
1	80	て					
2	90						
3	100						
4	110						
5	120						

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

1000	Protocol Number	Preparation Date		
LOGO	Version Number	Version Number Revision Date		
Analytical Test Method Va	alidation / Verification	n Protocol	Page No.	Page 15 of 17

10.0 LIMIT OF QUANTITATION (LOQ).

LOQ is the lowest concentration of an analyte in a sample that can be determined (quantitated) with acceptable precision and accuracy under stated operational conditions of the method. LOQ can be calculated at levels approximating the LOQ according to the formula LOQ = 10(SD/S). Where SD: Standard deviation and S: Slope

Sample	Conc. %	Conc. (mg/ml)	Avg. Peak Area	Standard Deviation	Slope	Conc. (ug/ml) at LOQ 10 x std.dev /slop	Area at LOD
1	80						
2	90					\mathcal{S}	
3	100						
4	110				NO.		
5	120						

11.0 SYSTEM SUITABILITY

System Suitability is the checking of a system to ensure system performance before or during the analysis of Unknowns. SST accomplished by summarizing data on reproducibility, efficiency, tailing and resolution for replicate injections.

	Creteria	Parameters	Day(s) SST	Avg. SST	Conclusion Qualified√ - Disqualified×
Acceptanc	RSD <u><</u> 1%	Inj. Precision for Peak Area (n=6)			Qualified Not Qualified
e Criteria for SST	Rs= <u>></u> 2.0	Resolution (R1)			Qualified Not Qualified
	T= <u><</u> 2.0	Tailing Factor (T)			Qualified Not Qualified

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

1.00	SO -	Protocol Number		Preparation Date	
Lot		Version Number		Revision Date	
Analytical Tes	st Method Va	lidation / Verification	Protocol	Page No.	Page 16 of 17
	N= ≥ 2.0	Capacity Factor (k)			alified
	N= ≥ 2000) Theoretical Plate (N)	s		alified Not Qualified
2.0 <u>OBSE</u>	RVATIONS	/ DEVAITIONS:			CO(

12.0 OBSERVATIONS / DEVAITIONS:

Protocol Section No:		Page No:		Deviation #:	
Protocol Requirements		· · · ·			•
	State the proto	col requireme	nts:		
	Deviati	on Descriptior	٦		
		Ń	0		

12.1 JUSTIFICATION FOR ACCEPTANCE:

Deviation Cause/ Investigation						
estigation						
No.						

12.3 DEVIATION REPORT WRITTEN BY:

Originat	tor/Function	Nam	e	Signati	ure	Date
	Prepared by		Revie	ewed by	Ap	proved by
Sign & Date						
Name/ Designation						

Pharma Protocol Number Hub.com Version Number		Preparation Date Revision Date	
Submitted By			

13.0 **CONCLUSIONS**

14.0 POST APPROVAL:	
---------------------	--

Submitted By				
13.0 <u>CONCLUSIC</u>	DNS			
14.0 POST APPR	OVAL:			
Responsibility	Designation	Name	Signature	Date
Written By				
Reviewed By	X			
Approved By				

	Prepared by	Reviewed by	Approved by
Sign & Date			
Name/ Designation			

NNN .

Our Knowledge Sharing Platform:

To get regular updates on pharmaceutical industry you can join us at our following knowledge sharing platforms:

- Web address: <u>www.pharmaguidehub.com</u>
- Telegram Link: <u>https://t.me/pharmaguidehub</u>
- LinkedIn: <u>www.linkedin.com/in/pharmaguidehub</u>
- Facebook Page Link: <u>https://www.facebook.com/profile.php?id=61557224322551</u>
- Twitter Link: <u>https://x.com/pharmaguidehub</u>
- WhatsApp Group Link: <u>https://chat.whatsapp.com/HY09XT4iEL07oCE4Am3JUW</u>